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ON TWO- AND THREE-DIMENSIONAL RESULTS
FOR ROTATIONALLY SYMMETRIC DEFORMATIONS
OF CIRCULAR CYLINDRICAL SHELLS

by

S. Nair and E. Reissner

Department of Applied Mechanics and Engineering Sciences
UNIVERSITY OF CALIFORNIA, SAN DIEGO
La Jolla, California 92093

ABSTRACT

Previous considerations by asymptotic expansion procedures of the
relation between elasticity theory results and thin-shell theory results for
the case of rotationally symmetric deformations of an edge-loaded semi-
infinite circular cylindrical shell are supplemented by an analysis of this
problem for a shell possessing a limiting-type orthotropy, such that transverse
normal strains vanish identically. It is shown that assuming this kind of
orthotropy has the important benefit of allowing the derivation of exact expres-
sions for the edge zone solution contribution, when such exact expressions
are not possible for the problem of the shell with more general properties
of the material. —One result of our analysis is an answer to the following
question. Given a shell with arbitrarily prescribed edge displacements, what
is the asymptotically exact form of the corresponding conditions for this same

problem, treated within the framework of two-dimensional thin-shell theory?

% A report on work supported by the Office of Naval Research, Washington,

D.C.
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ON TWO- AND THREE-DIMENSIONAL RESULTS
FOR ROTATIONALLY SYMMETRIC DEFORMATIONS
OF CIRCULAR CYLINDRICAL SHELLS

S. Nair and E. Reissner

INTRODUCTION

We return once more to the problem of rotationally symmetric
deformations of a semi-infinite circular cylindrical shell as the simplest
non-trivial example of the relation between three-dimensional elasticity-
theory analysis and two-dimensional thin shell-theory analysis. The first
paper on this subject [1] considered the problem of the asymptotic determina-
tion of a class of "interior'' solutions for the given three-dimensional boundary
value problem and the derivation therefrom of a system of two-dimensional
shell-theory equations including the formulation of shell-theory boundary
condition statements from given three-dimensional elasticity-theory state-
ments ¢! such conditions, for the case that these conditions were stress
boundary conditions. A subsequent paper by Reiss [2] extended this work by
considering complete asymptotic solutions, including interior solutions and
"edge-zone'' solution contributions. The results obtained in this manner
confirmed the conclusions in [1] in regard to the problem of two-dimensional
shell theory, while at the same time supplying significant additional insights
in regard to the nature of the relation between two- and three-dimensional
theory, with these insights having meanwhile been extended and generalized

in important ways by various other workers, in particular by Goldenweiser [3].

One of the difficulties encountered in the use of an edge-zone solution
contribution, as done by Reiss [2], consists in the fact that the relevant two-
dimensional boundary value problem for a bi-harmonic function defined in a q

“tion

semi-infinite strip cannot, for some important cases including the case of pure
4 - ; He - .
traction conditions and of pure displacement conditions be solved in closed form,

and to the extent that this is the case the asymptotic results which are obtained

remain approximate rather than exact. BY
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Given the impossibility of a closed-form solution of the relevant
bi-harmonic problem, as well as the apparent absence of results for the
case of pure displacement edge condition cases, we have recently
considered the complete problem by combining interior asymptotic
expansions, Rayleigh-Ritz type edge-zone solution contributions, and
upper and lower bound formulas through use of the principles of minimum
potential and complementary energies [4]. The principal results of this
analysis consisted in the derivation of upper and lower bounds for the values
of influence coefficients involved in the solution of the semi-infinite circular
cylindrical shell problem with prescribed edge tractions or prescribed edge
displacements. All of these bound results were such as to imply the deter-
mination of exact results for the solution of the three-dimensional problem
by means of two-dimensional theory, insofar as the leading terms in an
expansion of the solution of the three-dimensional problem in powers of wall
thickness h to shell radius ratio a were concerned. We also determined
supplementary terms for such an expansion, of relative order h/a (including

1
terms of order (h/a)? which are encountered for some classes of edge condi-

tions), with these supplementary bound terms being such that in some cases
there was coincidence between upper and lower bound results so that, in
effect, a determination of exact results, up to terms of relative order

h/a, was accomplished.

In order to understand the meaning of these results, as well as the
significance of the analysis which follows it is convenient to interpret the
leading-term results as exact results for an infinitely-thin shell (that is, for
a shell for which h/a+0), with the supplementary terms representing the
effects of finite thickness. There are altogether three distinct effects of
finite thickness. The first of these is a geometrical effect, having to do with
the change of width of shell elements with distance from the middle surface
(so that this effect is absent for the special case of a flat plate). It is known

that this effect is taken account of properly (assuming absence of the other
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two) in a refined two-dimensional shell theory associated with the names of

Flugge, Lurie and Byrne. The second effect is the effect of transverse
normal stress deformability (vwhich is absent for the case of a limiting-type
orthotropic material unable to sustain transverse normal strains). It has
earlier been shown that this effect is of the same order of magnitude as the
geometrical FLB effect [1], and our recent work [4] indicates that for some
classes of edge condition this effect comes out to be of relative order (h/a)%

(without these terms being of numerical significance, however, in comparison

with the co-existing h/a-order effects).

The third of the effects of finite thickness is the effect of transverse
shear deformability. This effect too comes out to be of relative order h/a.
We are not concerned here with the consequences of this effect, in regard to
the order of the differential-equation system and to the number of the asso-
ciated boundary conditions, as discussed most simply in recent work dealing
with the subject of plates [5]. Rather, ‘we are concerned with this effect
from the point of view of its relative numerical dominance in comvarison

with the other two, as revealed by our upper and lower bound calculations [4].

Having previously obtained upper and lower bound results for the
three effects of geometry, transverse normal stress deformability, and
transverse shear deformability, with these three effects being additive up to
orders of magnitude which are of primary interest, we now undertake an
asymptotic analysis of two of the three effects, these being the effects of
transverse shear deformability and of geometry. Our analysis is based on

recognition of the fact that it is possible to derive exact solutions for the

two-dimensional semi-infinite strip problem governing the edge-zone
solution contribution, upon assuming a limiting-type orthotropy in such a

manner that transverse normal strains vanish identically.

Having the existence of these exact solutions for the edge-zone
contributions involved in the asymptotic expansion procedure, we are
now in a position to verify and, in principle, to refine the results

of our upper and lower bound analysis. Beyond this, we are able to obtain
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results for types of boundary conditions which do not fall within the scope

of the indicated bound solutions. To mention a specific example, our analysis
permits us to solve a problem which has long been of interest to us but for
which until now no rational solution has come to our attention. The problem

is as follows. Given a semi-infinite circular cylindrical shell, with arbitrarily

prescribed edge displacements as loading conditions. To be determined is the

asymptotically exact form of the corresponding conditions of the first-order

interior solution contribution, to wit the appropriate form of the corresponding
boundary conditions for this same problem, treated within the frame work of

standard two-dimensional thin shell theory.
FORMULATION OF THE PROBLEM

We take as differential equation for symmetrical deformations of

circular cylindrical bodies a system consisting of the equilibrium equations

roxx+(r1'),r =0 , r‘rx+(r0t)‘r-09 =0 ., (2.1)

’ ’

in conjunction with stress strain (displacement) relations of the form

g -Vg g TN = VD c
i W 0 L x . 8 R
53 E rE SR E rE :

m m

g

& Bl e T 2.2
= =Y — u = = .

o Er r Em X ,r+v,x G ° )

1
where Em = (EEr)z, with positive E, Er and G, and with the additional strain

energy positive -definiteness conditions v® < 1 and Zu: <1-v.

The system (2.1) and (2.2) is to be solved in the reg'ion 0 €£x <=,

a-cSr <a+csubject to face boundary conditions
r = azc; c. =0 , 3 (2.3)

subject to edge boundary conditions "at infinity' which for all cases are taken

in the form

X 4 @ o =0 v = 0 (2.4)




and subject to edge boundary conditions at the loaded edge of the shell, of

the form
‘u = = :x 2 , Pi Ux = C-J'x S

x = 03 ! 2 c (2.5)
l v =V , or =T "

with the right hand sides in these four relations being prescribed functions

of r, subject only to the restriction that f:."::(r/a):—rxdr =10,

Within the frame work of the above class of three-dimensional problems |
(which because of the assumed absence of any 8-dependence of the solutions
formally reduce to a class of two-dimensional problems) we are particularly
concerned in asymptotic reductions to two-dimensionality (with this reduction
here formally to one-dimensicnality) for the determination of the weighted
stress averages

.at+c a+c
M = ] (r/a)d (r -a)dr , Q = J (r/a)Tdr (2. 6)
a-c & a=-Cc

and for the determination of displacement measures such as,
V =vi{x,00, 8 =a 1_(x, 0 . (2.7)

with these reductions being of technical significance for ''sufficiently small"

values of the wall thickness-diameter ratio c/a of the shell.

In association with the derivation of a system of two (here one) .-dimen-
sional differential equations for the quantities Mx’ Q, V, B it is necessary to
also derive a system of suitable edge conditions, involving the functions
ﬁ,r, v, &x, T which appear in equations (2.5). One expects, and this has been
shown to be true in [1] and [2], that insofar as the traction condition portions in

(2.5) are concerned the equivalent lower-dimensional edge conditions are of the form

x = 0 Mx = Mx ’ .Q = Q (2. 8a)

with L_dx and Q defined in terms of ax and T in accordance with equations (2. 6).

One also expects, and this is generally considered to be correct, that

when the displacement condition portions in equations (2.5) are such that u 5

-5«
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as well as v are independent of r, then the equivalent lower-dimensional

edge conditions are of the form

x = 0: V:\-r, B = u . (2.8b)

We will, in what follows, re-confirm the asymptotic validity of the above
expectation, within the frame work of the restrictions associated with the
nature of the analysis which is here carried out. Over and above this result,
however, we will establish the form of the edge conditions for "effective'
measures V and 8, not necessarily identical with these measures as defined
in equations (2.7), which are valid in the event that u _and v are other than indepen-
dent of r. An example of this nature which will be cc;nsidered explicitly is

the case where u is assumed to be proportional to (r - a)® in place of the usually

assumed linear distribution.

DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS
FOR TRANSVERSELY INEXTENSIONAL DEFORMATIONS

The case of transversely inextensional deformations is given upon

setting
E = © (3.1)
in the stress strain relations (2.2), These may therewith be written in the form

-1
Eu =G = U0 Er 'v = 0, -vo
e’ ) Ux’

(3.2)

v =90, : G(u’r+v'x) ST

where it will be assumed from here on that E, ¥ and G are independent of x and r.

Our first conclusion is now that the transverse displacement component

does not vary across the thickness,
v = V(x) (3.3)

and that, associated therewith, the transverse normal stress component J'r

assumes the character of a reactive quantity,

In order to solve the remaining boundary value problem, we begin by

satisfying the first of the equilibrium equations (2. 1) by means of a stress

b=




T T S T T

function ¥, in the form

W =a® ., o=z -a¥_ |, (3.4)
x s . » X

where the factor a on the right hand side has been introduced to make the writing

of some of the developments which follow somewhat more convenient.

We next use the second of the stress strain relations (3.2), in conjunction

with equation (3. 3) in order to write for the circumferential normal stress,

rog = vavl r+EV . (3.5)

’

With the above expressions for Ge and T, we obtain from the second
equilibrium equation in (2.1) as an expression for the transverse normal stress
O‘r‘which satisfies the condition of vanishing cr forr =a - c,

r r
6 = aj (¥ +vr ' )dr + EVI rtdr . (3.6)
r , XX it

a-c a-c
The condition that Ur must also vanish for r = a4c gives as one of two equations

connecting the two functions ¥(x, r) and V(x)

a+c
v EV, a+c
.L c(ql,xx+r\p,r)dr+ a;ma-c Sl (3.7)

A second equation connecting ¥ and V follows upon expressing u 2 in terms

of ¥and V in accordance with the last relation in (3.2), in conjunction with (3. 3)

and (3.4), as

u = <V -
,r lx

\Ilr
? ’ (3.8)

CRELY

and by combining this result with the first relation in (3.2), written in the form

Eu,xr = cx, o VGG, .’ with cx and Ge taken from equations (3.4) and (3.5). The

ensuing differential equation may be written in the form

B
E

v
(\If -’—’)+1—\If sEy s v =20 | (3.9)
, Ir £ G ;X% 3 %% ra

Having equations (3.7) and {(3.9) it remains to state boundary conditions in

terms of Yand V, in accordance with the remaining face boundary conditions

o,




in (2.3), which concern 7, and in accordance with the edge conditions as stated

in Eqs. (2.4) and (2. 5).

We begin by satisfying the edge condition at infinity by stipulating
VY@, r) =0, V() =0 . (3.10)

With this, and with observation of the relation f:+2(r/a)cxdr = 0, the face

boundary conditions T(x, a £ ¢) = 0 take on the form
¥e, a kel = 0 . ; (3.11)

Finally, the conditions (2.5) for the loaded edge of the shell become

v W g
al i,x - iy x
V _+=-= = -u A e
4% LG P N r a
x = 03 . atc (3.12)
Vv = V or \I’rdr = -Q
a-c ’

We note that in writing the second set of conditions in (3. 12), we have taken
account of the fact that the assumed properties of the material require that the
prescribed transverse displacement v be independent of r and so may be

written, in consistent fashion, as \7, and that at the same time this specialization
of properties implies a sensitivity of the medium to the resultant Q of the edge

stresses T only, rather than to the details of a prescribed T-distribution.
STIFFNESS AND FLEXIBILITY COEFFICIENTS

In accordance with our earlier work in [4], we define general stiffness

coefficients K, with reference to the problem of prescribed edge displacements,

for the case thatu _ = -Bo and V = -Vo, by means of relations of the form
9

M, (0). = KggB - Kz V_ ., Q0) = Ky V_ - K g8 (4.1)

VV o e °
where KVB = KBV'

At the same time we define a specialized system of such coefficients for

mixed edge condition problems, as follows

-8-




Mx(o) Kﬁao (whenT = 0) ,

(4.2)

Q(0) = vao (when Cx = 0) .

Insofar .  the problem of prescribed edge tractions is concerned, we
have earlier [4] defined flexibility coefficients C with reference to traction
distributions (r/a.)c-rx - (3M°/2ca)(r - a) and (r/a)T = (3Q°/4c)[1 - (r - a)®/c?],

and weighted edge displacement averages

a+c 2 a+c 2 )
* % r-a - ® . 3.F (r - a)
so = -4CJ [1- ]u,rdr A S -4CJ - Sy Jvdr | (4.3)
a-c a-c
in the form
Y e M RCILE T N WS BN . 4.4)
o MM o MQ o ’ a = Manite T oonme e

with these relations being ''nearly'' the inverses of equations (4.1), upon the

prt * *
identifications 8 =8 , V =V , M_(0) =M _ and Q(0) =Q .
o o' o ) x o o

The principal aim in [4] was ti:2 deduction of upper and lower bounds for the
coefficients K and C, with these bounds depending on the geometrical parameter
c/a, as well as on the materials property parameters E, E/G, E/Er, vV and v_.
Among the characteristics of these bound relations the following are noteworthy.

1. In the limit c/a+0, our upper and lower bound values coincide with
each other and with the corresponding values of what may be called first-approx-
imation classical thin shell theory results.

2, For sufficiently small finite values of c/a our bound values

1
involve additive terms of relative order (c/a)? and of relative order c/a.

(N[5

The terms of order (c/a)? represent transverse normal strain effects alone, while
the terms of order c/a represent transverse normal strain effects, as well as
transverse shearing strain effects, and also geometrical effects of the Flugge-
Lurie-Byrne type. The numerically dominant of these three effects is the trans-
verse shearing strain effect, even though this effect does not contain any

1
(c/a)?-contributions.

Insofar as the determination of stiffness and flexibility coefficients

is concerned the present analysis enables us to obtain exact values of all

-9-
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’ 1
contributions ¢f relative orders (c/a)? and c/a (as well as exact values of contri-

butions of higher order in c/a should we so desire) subject only to the restriction
Er ==, While it is possible to do chis for the entire set of ten coefficients

defined in equations (4.1) to (4.4), the necessary analysis will be carried

out in what follows only to the extent of obtaining expressions for K

and KB.

THE NON-DIMENSIONALIZED BOUNDARY VALUE PROBLEM

88’ Kyg

We introduce a non-dimensional axial coordinate £ and a nondimensional

radial coordinate 7], measured from the middle surface of the shell, by writing
x =bE , r©=atenn ., (5.1)
with b being in the nature of a characteristic length, to be chosen presently.

We further set
(1-v)¥ = EV g€, m) , V = V_F({§) , (5.2)

where \IJO and Vo remain to be chosen, and we define dimensionless parameters

p and @ in the form

p=cfa, (-9 = EBIC . (5.3)

Indicating now differentiations with respect to £ and 7 by primes and
dots, respectively, the two differential equations (3.7) and (3.9) for ¥and V

take on the following form

ol 2 rene

{ o " ‘0 2 1+ p .
‘I'ojq[?g 7 gng]dn LB R o pF] o e
T Bt o aBE &2 v, VB
At R e - LR AR ATl =9 (5.5)

At the same time the face boundary conditions (3.11) become
g(gn = 1) =0 ’ (5.6)
and the edge boundary conditions at infinity become

gl=, M) =0, F(eo) =0, (5.7)




Insofar as the boundary conditions (3.12) at the loaded edge are
concerned, we will limit ourselves in what follows to the consideration of
just two of a total of eight possible cases, both of them concerning problems

with prescribed axial displacements as expressed in terms of the slope func-

tion u = with the other condition being the displacement condition of vanishing
1
V., or the traction condition of vanishing Q. Expressed in terms of g and F this

set of conditions takes on the form

N4 2 v

L. ‘0, M +==F'0) = -u

b 1+png() b --,l' » (508)
1 /

F(O) = 0 or jg(o, mdn = 0 . (5.9)
1

Expressions for the stresses O’x, T, 09’ and for the stress resultant Q and

the stress couple Mx follow from equations (3.4), (3.5) and (2.6) as

v v y

PRRTRNRE . v UL i v i alD (5. 10)
x L= ¢ 1+on ° T i pe b lsog
v v
T LN E o ¥y
G 5% Temm TOVRE Y EED (5.11)
E‘I’OC h E \I}oc -
M= -lgd'ﬂ s B BTTEE Y J-lgdn . (5.12)

We list additionally as expression for the circumferential stress resultant
a+c
= 0 ,dr
Ng ‘I‘a-c I

EV¥ o
)

g 1+0p J
Ng = EV plni——=F - 7=,

e
2 Ea (5. 13)

2 )
L @+em

and we shall not concern ourselves, in what follows, with the complementary

expressions for Ve and Mg.
INTERIOR AND EDGE ZONE SOLUTION CONTRIBUTIONS

We accept as known the fact that the solution to be obtained will, for

sufficiently small values of p, be composed of two contributions, one of them

“iTe

anadaduaa . Ul oo

SRR L aaiiiaae ados £ g




1
z

being an "interior' contribution 8, Fi' with characteristic length b = bi = (ac)
and the other an ""edge zone' contribution g Fe' with characteristic length

b = be = c. We note that in this way Fi = Fi(Ei) and Fe = Fe(£e), etc., but

we shall refrain from making the distinction between Ei and E;e explicit, as this
will cause no difficulty as the analysis proceeds. With Ei, Ee and 7 defined in
this manner, and in view of the form of the differential equations and boundary
conditions for ¥ and F, we are in a position to stipulate the basic order of
magnitude relations

8 8o Fy» Foo 81 8,0 8 8, F, F, = O(1) (6.1)
and we shall write, in place of equations (5.2), so as to make the distinction

between the two solution contributions explicit

2 9 e
(1-v% - BEWg +0g) ., ¥ = ¥F sV F (6.2)

with the form of the two differential equations for the set g Fi and for the
set ge, Fe being distinct, to the extent that this is required to account for the

difference between bi and be.

(V][

Setting b = bi = (ac)®, we obtain from equations (5.4) and (5. 5)

" Vo arl 'Uz,_l + 0 N
\ij (e, Sl Tt e Vol =] 2 6 (6.3)
. o) vVp _
Ve - Toon8i * «®og{] + V.o[(1 + oM F] i enty 29 (6.4)
Setting b = be = c, we obtain instead
1 02 L2
Vo Lt 5 6.5
‘I'eJ [g W +on)2g]dn+vo[ T e
v(g - 2 g’ g]+V[(1+pn)F”+Lp—a-F] =0 , (6.6)
e"e 1+pn°e 1+pn e

In view of the difference between gi and €e, the functions gi and ge must

wiZe




individually satisfy the face boundary conditions
n = £1: g =0, g =0, (6.7)

and for the same reason the edge conditions at infinity (5.7) must be satisfied

individually,

§ = = gi=0, ge=0, Fi=0, Fe=0. (6.8)
With g and Fi’ and g, and Fe' sofar being subject to a system of
uncoupled requirements, there remains only the system edge loading conditions
(5.8) and (5.9) to accomplish the necessary coupling for the determination of the

1
two sets of functions. We find that equations (5.8), again with bi = (ac)? and

b =c¢, takes on the form
e

1 :zpn[\lrip%ga’w,n) + \Ileg;(O,n)] + Vip%F{(O) + VeFe'(O) = -cﬁ’r : (6.9)
and equations (5.9) take on the form
V.F.(0) + V_F_(0) =0 , (6.10a)
p_r

: 1
_[ [‘I'ingi'(O.n) +'I'eg;(0.n)]dn g (6.10b)
-1

Having the relations (6.2) to (6.10) our next step is an appropriate
disposition of the four scale factors \Il.l, \Ile, Vs V. We begin by observing
that in order to be able to satisfy the face boundary conditions (6.7) in such
a way that not only the functions g, and 8’ but also the functions Fi and Fe

are involved it will be necessary to have the terms with g in equations (6.4)

and (6.6) of the same order of magnitude as the terms with F” in these equations.

Accordingly, we get

v oe P, ¥ osY ., (6.11)
1 1 e e

Introduction of (6.11) into the edge conditions (6.9) and (6. 10) then gives

further

-13-
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& ‘ =
1 + pn ge(o’ n)] = ‘Cu' r ’ (60 12)

o ,
1+0on5i

,
Vi p?[F;(0) + (0,m] + Vv [F_(0) +

with (6.10a) remaining unchanged, and equation (6. 10b) assuming the form
2 _3_ / 4
[ vieTe/om + v gl0.mlan = o . (6.13)

-1

Having equation (6. 12), we now impose the requirement that both interior
and edge-zone solution contributions participate in the satisfaction of this non-

homogeneous edge condition. This means that we must have

Vot o=V, (6.14)

Finally, we introduce a weighted average, B, of the variation of edge

rotations in thickness direction by writing

ﬁ’r = -Bs(n) , ; (6.15)
with
1 " 4 4t -
j_lu -nYsman = 3, B = -2 CREEAC (6.16)
(so that B =B whenu =-B =const.).

o ST o

With (6. 14) and (6. 15) and with the further stipulation that

Ve = ¢cg , (6. 17)

the nonhomogeneous edge condition appears now in the form

a’p : 5 o2

F(0) + g.(0,m = s(n (6.18)

and the homogeneous edge conditions (6.13) and (6. 10a) become

1
F.(0) + ozFe(O) =0, (6. 19a)
.O_r
. /
[ tegj0.m + 5 0. mlan = 0 . (6. 19b)
-1

-14-




Equations (6.18) and (6.19) are to be used in conjunction with the
consequences of introducting (6. 11) into equations (6.3) to (6.6), that is

in conjunction with two systems which may be written in the form

o3 1 Ug dn
- T T ) J‘
n =
J-1gid7l ™ T e [+ Tromz =0
o (6.20)
..+F/I+pa2 ”+nF”' i l L O
g i & 1" Txml ="
and
3 1 vg dn
- 2 e 1-v 140 e
J_lge‘h” P [L(l gyl pFe] &
(6.21)

e 2 7 g.e " OUFe
B X et P Ty P et T o T 0 -

The solution of (6.20) and (6.21), subject to the edge conditions (6. 18),
(6.19) and (6.8) and subject to the face boundary conditions (6.7) is to be
introdvced into equations (6.2) for ¥and V. Upon taking account of the relations

(6.11), (6.14) and (6. 17) we have then
1 1
(1-v3¥ = EcB(g, +0%g) » V = Jc_as(Fi + 0 (6.22)

Furthermore, introduction of ¥ and V from equation (6.2) into equations (5.10)
to (5.12) giveé as expressions for stresses
. % 4 !
Eg 8. * P8 Ep Bt PE

o = =
b 4 1 - v2 1+ pn ’ 0 1-v2 1+o07 ’ (6.23)

1 1
. z25° 2
" ge+£>gi pFi+pFe

1-v3 1+op7 i 1+ o1

Og = EB . (6.24)

and as expressions for the stress couple Mx and the stress resultant Q ,

EBc

Mx s - J‘1(g + p g ydn , (6.25)
E8c * ’ /,

Q = -3 _sz.l(ge +ogan (6.26)
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We note that while the above formulas for Mx and Q give the
impression that the edge-zone solution contribution 8o makes a dominant
contribution to these quantities —which, if true would detract much from the
significance of conventional two-dimensional shell theory—we will find shortly
that f_llged‘n comes out to be of a smaller order of magnitude in p than p%f_llgidn,

so that no problem of this sort does, in fact, arise.

Beyond this we may also note that the differential equation for g, in
(6.21) is effectively of second order, in place of a fourth-order bi-harmonic
problem which is encountered in the analysis of the corresponding problem
for an isotropic homogeneous shell medium. It is this difference in the order
of the differential-equation problem for the edge-zone solution contribution
which makes possible an exact solution of the complete problem for the case

of the transversely inextensional medium.

PARAMETRIC EXPANSIONS FOR INTERIOR AND
EDGE-ZONE SOLUTION CONTRIBUTIONS

As inspection of the differenti=1 equations (6.20) and (6.21), in conjunction
with the boundary conditions (6.7), (6.8), (6.18) and (6. 19) indicates the possibility

1
of an expansion of the solutions in powers of the parameter 02,

=

1 -—
4 z = .
B AR PR B wa g e ST R (7. 1)

and observing that (1/0)%[(1 + 0)/(1 - P)] =2[1 + /3 +...], we have then from
equations (6,20),

oo

” 2 .o ”
jlgindn+2(1-v B, =0, gL #P 20 ‘8=l (7.2)
I'1 " 2 3
} B -VF, = '".[ Uiy ¢ B A5
| o
3 = : ; (7.3)
gm 7 Fin i gin-a S gin-z ) nFin-z 5 in-z °

Except for the form of (6.19a) this expansion would be in powers of p, rather

1
than 0%, This means that when (6. 19b) applies, one-half the terms in our

expansion will vanish automatically.
«l16e




4 with analogous relations forn =4, 5, ..., which will not be utilized in what

follows, and equations (6.21) give in the same manner

E .
| " fie . 2 7 " g » ul
Ilgend‘n = 8en + 8en + Fen = 0w 0, 1, (7.4)
3 » . 2 u "
Igendn L TR Fen * Ben-z ” nFen-: i B wE S . AN
1 1 :
J_lgendn 5 -V.Il_lgen-q.dn rih 5 ¥ )Fen-q. y m = 4,5 (‘7.6)‘r
The associated boundary conditions which follow from (6.7) and (6.8) are
= £ 1: = =
no=tL 5, =6 . g, = 0 . (7.7)
£ = = gin =0 , gen =IO Fin = @ ., Fen — g ; B (7.8)

The coupling between interior and edge zone contributions will be effected
in the process of satisfying the boundary conditions for the loaded c<ge of the

shell which follow from (6. 18) and (6.19) in the form

4 / 3 7
F (0) + F, (0) +@%g  (0,m = s() , (7. 9a)

’ ! 2 7 5
F/(0) +F_(0) +a% (0,m =0 , (7.9b)

’ ’ 2 ¢ DR o el E 3
F/ (0) +F. (0) + g, (0,m) = a’ng/ (0,m -a%g/ (0,m ; n =2, 3,(7.9)

and

Fio(o) =0, Fin‘o)+Fen-1(e) = @ ; B = 15 25 3 s (7.10)
_CE

- ’

-18en(0,ﬂ)d77 =0 H n = ol 1 ’ , (7.113.)

It is in this one place that we require equations for n = 4, 5, in order to complete
the determination of our expansions terms upto n = 3,

«]7s
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.1

-] gl @man s n =23, (7. 11b)

1]

.1
’
| e ©.man
-1 -1

DETERMINATION OF INTERIOR SOLUTION CONTRIBUTION TERMS

We begin by determining the interior solution contribution to the extent
that this is possible without bringing in the form of the associated edge zone
solution contribution. In doing this we will arrive at a set of ordinary differen-
tial equations for the dimensionless deflection functions F,m, with Fio being
equivalent to the corresponding function in accordance with conventional two-
dimensional shell theory, with Fi-1 accounting-for the effect of deviating from
the '"conventional' assumption of an 7-independent edge slope function s(7), and
with Fiz accounting for the effects of transverse shear deformation and of

element width changes in the same manner as previously found in [1].

We complement these results by the discovery of the complete system

of boundary conditions for Fio' for an arbitrarily prescribed edge slope function

s(n), through use of the differential equations for the edge-zone solution contri-

butions, hut without having to determine any part of the edge-zone portion of the

solution of the complete problem.

Considering the fact that Fin = Fin(i), we find from equations (7.2), in

conjunction with the appropriate statement in (7.7) the simple result

2
g, =2l o V¥ b F 20 ; ne0, 1. (8.1)
in 2 in in in

In the same way we find from equations (7. 3) and (7.7), and with

(1 -v3a® = E/qG,

2 . 3 2 2 4
& 1 - n " 0= Ui " 1 -1 E 5-6m° + n
&in e "’ 3 TmatPTIT e 8 o
" i (8.2)
2 E »
F.m +3(1 -v )Fin = (SG - Zv) Fin-a OO B A

We now turn to the form of the boundary conditions for the functions F. .
in
We find from (7. 8) the obvious requirements of vanishing F. (and F. ) for
in in
£ =w, As far as conditions for £ =0 are concerned, we have as one of the two

conditions for Fio' for one of the two cases considered in (7.10) and (7.11), that
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Fio(o) = 0. The other conditions, in accordance with (7.9) to (7.11) all appear

to require the simultaneous determination of Fen and 8an' We will show next how

|
§
b

to avoid this complication to a significant extent.

DERIVATION OF BOUNDARY CONDITIONS FOR Fin' WITH OR WITHOUT
INVOLVEMENT OF EDGE-ZONE SOLUTION CONTRIBUTION

e s andar = e S S L

We begin by observing that equations (7.4) and (7.5), in conjunction with

the conditions gen(“’.ﬂ) = ge,n(**,‘n) = 0 imply the relations

1 1
[ e € man = [ g & man =0, (9. 1a)
-1 -1
I forn = 0, 1, 2, 3. Furthermore, from (6.21),
. ; ¥ =
I 8e4(€,17)d77 = (1-v )J'€ FeO(E)d€ . (9. 1b)
-

wWith the helpof (9.1), and through use of the first relation in (8. 1) and

(8.2), we may write the set of conditions in (7. 10) and (7.11) in the form

F. 0 =0, or F, (0) =0, (9.2a)
m

Fy (0) = -FeQ(O) .  Of F,u (0) =0 , (9.2b)

F. (0) = -F (0) or FY(0) = SE -v|F’ (0)

in KA en-1 —_ in - 115G in

2» 3 . (9.2(:)

2 [ )
-3(1 - )Jo F .64 ; n

It remains to establish a second condition at § = 0 for Fin’ through use
of equations (7.9), with a view towards letting this condition to be as much as
possible a condition for F‘i’n(O), in terms of given quantities. In order to accom-
plish this purpose, we consider an integrated version of the edge-zone differential

equations (7.4) and (7.5), with an appropriate weighting function, as follows.

We write, as a consequence of equation (7. 4),
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3 2 o " “ = : = 5 5 .4
L“ g e g SR R B R (9.4)

In this we write first,

1 =3
2, = _ 1
(1-n*gl an = ((1- Mg, +2mg )" - 2] g, an .

-1 -1 -1
with the conclusion, which follows from (9.1) and (7. 8), that ﬁ
1 z :
- 5 = . 5
.[1(1 n)g,dn 0 (9.5)

Introduction of (9.5) into (9.4) and observation of the edge conditions at infinity

then gives further

1
2 2_ 7/ ’ - o &
J'.l(l -n°)(e®g) +F.)dn = 0 ; n =0, 1. (9. 6)

Upon using (9.6), in conjunction with (7.9a,b), we obtain as conditions for

/ 4
F., and F.,
io i1

Fio(o) = I , Fu(O) =0 , (9.7a,b)

and we see that, in fact, the determination of Fio may in all cases considered

here be carried out without explicit reference to the edge zone contribution to

the complete solution of the problem.

It suggests itself to see to what extent application of the same procedure
to the differential equations (7.5) may make possible a reduction of the boundary
conditions (7.9c) which involve Fil:a and Fil:a' We find first, proceeding in the
same way as in going from (9.4) to (9.6), and observing that nF”en-z is an odd

function of 77, that now

1

1
2 2 7 V]
.[_1(1 - n?)(«®g,_+ F yan = Zf_l”gen-ad" . (9.8)
forn =2, 3.

20




Evidently, equation (9.8), together with the edge conditions at infinity,

J allows us to conclude that

o @

1
I-I(l - nz)[aag;n(o,m + Fén(O)]dn = -ZJ n_fo 8en-p& ndédn (9.9)

,r*q.v;;-;m.,

for n =2, 3. Therewith, and with the consequences of the first relation

in (8.1), we obtain altogether that

p 26" . 3t o~
Fin(O) C 5 Fin"a(O) + 2 J-anO gen_3(£I n)dgdn ;
30’3 2 a
| + —4—‘[-1(77 =7} )gen_a(o.n)dn ’ (9. 10)

forn =2, 3. We note as a very important consequence of (9. 10) the fact that

whenge is an even function of 77, which is the case when s(7) is even, then the
O

integral terms on the right vanish for n = 2 and we have a boundary condition for

Ei“ as well which is free of any reference to the edge-zone solution contribution.

EXPANSIONS FOR DEFLECTION, AXIAL BENDING MOMENT aND
TRANSVERSE SHEAR STRESS RESULTANT

In order to see the possibility of determining Mx and Q, and also V, for
the conventional displacement boundary condition case of an n-independent u
upto terms of relative order 0, solely on the basis of a determination of the ,
interior solution contribution we rewrite our earlier expressions for these

quantities as follows.

On the basis of equations (6.22' and (7.1),

b

1 1
B o - 2z
¥ .= Bca[Fi°+p (F11+Fe°)+p(Fi2+Fe1)+...] ‘ {19. 1)

On the basis of (6.25), (6.26), (7.1), in conjunction with equations (8. 1)

and (8.2) for the & and equations (9. 1) for the e’

2 1
M = -3-—E—:§-5—-—1 F, + p%F' +po|F’ -(9‘5 -V)F. e (10.2)
x 3 i » v)al io i1 i2 5G io
w2}




Z Eaca wt % wt
e (TTT’)_;{Fio“’ Fi

’ -V
+o[r‘."-(6—E- )F. 433 .

I.Q
- - . Fe°d£]+...} . (10.3)

3

We note that it will be possible to determine V, Mx and Q, upto terms of

relative order 0, soley on the basis of a consideration of the interior solution

contributions F\o' l-",u and Fia' to the extent that it is possible to determine these
functions without explicit consideration of the edge-zone solution portion, as

discus d on page 21, and to the extent that Feo and 1-"e1 turn out to vanish

altogether,
L! The same conclusions apply insofar as the determination of the stiffness
3 coefficients KBB' KVB and KB is concerned, inasmuch as we have that
:
K” = Mx(O)/S ’ KVﬁ = -Q(0)/8 , (10. 4)
F when V(0) = 0, and
1
; Kg = Mx(O)/B : ' (10. 5)
4

when Q(0) = 0.1'
EXPANSIONS FOR STRESSES

Introduction of the series expansions (7. 1) into equations (6.23) and

j (6.24) gives as expansions for the stresses 9, T, Ogs upto terms of relative

order 0,
o, = ~ER g +0%(gl +g )+ P, +E) -NEL ) +-e] ; (11.1)
i x 1 - v2'®e0 e1 io ez i eo 5
]
Ea 'é % 7 / 7 /
r. . = -l_va[ge°+p ge1+D(g&+gi°-nge°)+---] , (11.2)
1 :
= o . .
Jg = Vo + E&[p F, tP(F, +F ) +.. i (11.3)

f ¥ Note that (10.4) and (10, 5) are consistent with (4.1) and (4.2) in the light of the
defining relation (6.16) for B..
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We note that, in contrast to the results for deflection, axial moment
and transverse resultant, the distribution of stress in the shell will, for the
general case, be such that edge zone contributions corne out to be of a higher
order of magnitude than interior region contributions. This is not so for the
""exceptional'' cases for which 8eo and 8o, vanish identically, The significance
of this distinction will become apparent in our discussion of the exceptional
case of an N-independent ﬁ' - in comparison with the case where a . is assumed

to be a quadratic function of 7.

SOLUTION OF INTERIOR AND EDGE-ZONE
DIFFERENTIAL EQUATIONS

Determination of the interior solution contribution, in accordance with

equations (8.1) and (8.2), is the same as in the earlier work concerned with this

contribution only [1]. We find, upon taking account once for all of conditions

for £ ==, with 4m* = 3(1 - v?), that

F. = (A cosm§ +B si.nmﬁ)e.mE ¢ n =20,1 |, (12. 1)
in n n

and

- ; -m¥§
i (Ancos mé + anmméj)e

mw
B,

5G - )lém e ?  B7 St (A%

with the associated functions &in following from the above in accordance with

(8.1) and (8.2).

Having Fin and gin’ as indicated above we now turn to the determination
of Fen and 8en’ forn =0, 1, 2, 3, in accordance with equations (7.4) to (7. 8).

Writing as before as differential equations for 8en and Fen' the set

g;n + ng:n + F:n = 0§ B gL, (12.3)
g’ +a2g” +FP. a2y - NE” U g e (12, 4)

en en en-2 en-2

we take account of the first relations in (7.4) and (7.5), in conjunction with the

conditions for £ = », so as to establish as a system of three boundary conditions

i 9




1
J Bop(smdn = 0, g (%) =0, (12.5)

en
-1

with the presence of the terms F';n(ﬁ) in (12.3) and (12.4) making it possible to
satisfy the three conditions in (12.5), when without these terms the first condi-

tion (12.5) would rule out significant portions of the solutions of (12.3) and (12.4).

To see that this is in fact so we write (12.3) and (12.4) in the differentiated

form

g MATgl. =B ae GX, (12. 6)
oo 2 ne (L n

gen+a g = gem_2 -Fen-z SR amiEs2ead e (12.7)

and determine first the solution of (12.6).

We find, by separation of variables, that equation (12.6) has particular

solutions

AE/ £/a

g = (C, +C_cos e’ “ + (Dsinun)e 5’9 (12.8)

enp

where C_, Cz' D, A and 1 are arbitrary constants, Satisfaction of the three
boundary conditions (12.5) requires that these arbitrary constants satisfy the

relations

C, +Czl-lsinl = 95 G +C3cosk 28 o DElng =9 (12.9)
The conditions for non-trivial solutions in (12.9) are

tan\ = A , sind = 0 , (12.10)

for all positive roots A = Xj and U =d, forj,k =1, 2, 3,.... Itis evident that
the functions sin W] form an orthonormal system, such that every integrable
odd function of 7 in the interval -1 < 7 < 1 may be expanded in terms of them.

Additionally, it can be shown that the set

A - X,
cos ; cos J‘n

s W 75 (12.11)
j j
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also forms an orthonormal system, in such a way that every integrable even
1
function f(n), in -1 <M < 1, with the additional property f 1fd‘l’) = 0, can be expanded

in terms of them.
We use the above properties to construct the series solution

= -AE/a -uki/a

2 J ;
gen = j§-lcjnﬂoj(7])e B Dkn(s in ukn)e (12.12)

fo;n =0, k.

Before proceeding to the analogous solution of (12.7) we return to equation
(12.3) in order to establish, with the help of the conditions Fen(cn) = Fén(e) =0, as

solution F__(§) which is associated with g in (12.12),
en en

= e -1 J 3 =
F,_ = @y A7C, e TSN W (12.13)

We now consider equation (12.4) where it remains to determine the
appropr.:te particular solution corresponding to a right-hand side which can

be seen, with the help of (12.11) to (12.13), to be of the form

(sin A At/ -Li(glcx
Ecjn-z —Lcos Aj + Xjn)e + Dkn-a(uk cos uk‘n)e S

We find that a particular solution of (12.4) with the above expression in place of
the original right-hand side, which also satisfies the three boundary conditions
(12.5), is such that altogether

-Ajila -,/
L 5 chn'pj(n)e + Dkn(smukn)e

X, in X, -u g/
+Zc n ncos J‘n § sin J'n ; kE/
in-a\ A, 2X.cos A, 2A.sinA,
: j j j e

5 We note that it is this orthogonality property of the functions lpj which is responsible

for the advantages of the present solution of the general problem, in comparison
with the solution of the corresponding problem for the isotropic shell,

=25
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; cosu 7 - cosu, —ukE/O‘
+ EEDkn-z(n smukn - ”‘k )e ’ (12. 14)
and
A&/ -u £/
" 2 -1 ] 1 .3 -1 k (12.15)
R ¥ ij Uyt 7 @7 Hy cos . N TR .
for n =2, 3.

It now remains to determine the constants of integration cjn and Dkn
in conjunction with, or preferrably subsequent to, the determination of the constants

An and Bn in the interior solution portion Fin as given by (12.1) and (12.2).

DERIVATION OF BOUNDARY CONDITIONS
FOR DETERMINATION OF CONSTANTS IN 8en

We begin by recalling that the complete system (7.9) to (7.11) of
conditions at the edge €e = .‘,‘i = 0 of the shell had beea reduced, insofar as
possible, to a system of conditions for the F'm alone, consisting ol cquations
(9.2), (9.3), (9.7) and (9.10). A characteristic of these conditions is that in
them the effect of the edge-zone solution contribution manifests itself through
the presence of certain definite integrals with respect to n of gen(ﬁ,n), but with-
out appearance of the 8en themselves. Consequently, these conditions do not
contain those elements of the complete system of edge conditions (7.9) to (7.11)

which are required for a determination of the series coefficients Cjn and Dkn in
g .

en

‘ A re-inspection of equations (7.9) to (7.11) makes it clear that the
remaining supplementation of the boundary conditions (9.2), (9.3), (9.7) and

: (9. 10) must come from equations (7.9), and not from (7. 10) and (7.11).

We obtain the first of the remaining transformed conditions by introducing
(9.7a) into (7.9a) and by eliminating Féo(O) from this relation by considering that

1 / . .
f_lg eod‘n = 0. This gives A

n

1 2
s(n)-}_‘J s(mdn- . (13.1)
=1

1 3,
@ geo(O,n)
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We finally introduce Fi.’n(o) from (9.10) into (7.9c) and consider that
 , o] / e ) 3, - :
here J‘_lgendn = o, and g_m_z(o,‘n) =3 (1 -1 )F.m_a(O). Therewith equation (7. 9c)

becomes

1
’ 5 ’ i [ ’ ¥ _1. _l T N
00,00 = MLy O - 5[ Mg, 0.man- 3 - IEL_O) (13.3)

for n =2, 3.

Having equations (13.1) to (13.3), in conjunction with equations (12.12)
and (12.13) for 8en and Fen’ we are now in a position to arrive at some general
conclusions, without additional analysis. To whit

(1) The functions 8e, and Fe:. will vanish identically, for all edge
conditions cases here under consideration.

(2) The functions 8o and Feo will vanish identically for the special case
s(m) = 1, but will otherwide have a dominant effect in equations (11.1) to (11.3)
for the distribution of stress, and a direct effect of relative order o% on the
values of the deflection V, in accordance with equation (10.1), as well as an
indireci cffect of relative order p% on Mx and Q, in accordance with equations
(10.2), (10.3) and (9.2b).

(3) The functions 8es and F% will make a contribution of relative order
P on stresses, in accordance with (11.1) to (11.3) but will make no such contri-

bution to V, Mx and Q.
THE CASE OF A UNIFORM EDGE ROTATION

We assume now, as in [4], an axial-edge displacement a = -So(r - a),
giving u . = -8, and, inaccordance with (6. 16), 8 = -(3/4)(-8 )(4/3) =8 _ and
’
therewith, in accordance with (6. 15),

s =1 , (14.1)
and then, as discussed in the preceding section

R (14.2) |

With (14.2), and with 8, = 0 and Fe1 =0, we have, from (9.2), (9.3), (9.7)

and (9.10) as edge conditions for the interior solution contribution
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F i =°F  Eoy =R s P, (14.3)

together with

Fio(O) = Fh(O) = Fiz(o) = Fia(o) O (14. 4)
for the case V(0) = 0, and

] W w 5 w e m __

Fio(o) = Fh(O) = Fiz(o) = Fia(o) = 0 (14.5)

for the case Q(0) = 0, with equation (14.3), together with (14.4) or (14.5), to be
used for the determination of the constants of integration An and Bn in (12.1) and

(12.2).

We omit the elementary calculations leading to the appropriate values

of the A and Bn. With their help there follows
n

11
V(o) = -calB[F, (0) + pF (0) +...]
11
=%B[1‘#(§%+§)+“ } ' (14.6)
s
M_(0) = -Z—ES:Q—IB {E’;O(O) +P|F(0) - (-g-—g— - v) Fio(O)] + }
m a
5
n fm_ra[lg(ga%zyl , i

for the case Q(0) =0, and

-3 .
Ec 0 (9E v 3
M (0) = Bll -« —{=—= +=) + ... . 14.8
EC o 3E v :
Q) = ~ B[l - r_n—2<5—G‘ +-2') + s B (14.9)

for the case V(0) = 0 where, it is recalled, 4m* = 3(1 -v?® and p =c/a.

We note, specifically, that the results in (14.6) to (14.9) have been obtained

without determination of any edge-zone solution contribution and that furthermore

-28-




the stiffness coefficients KBB and KVB which are associated with (14.8), in
accordance with (10.4), as well as the coefficient KB associated with (14.7)

in accordance with (10.5) are consistent with our earlier bound results in [4],
upon specializing these so as to correspond to the limiting-type assumption of a

medium unable to experience transverse normal strains.

Having determined the Fin' we may now obtain the here leading terms
8es and Fa of the edge-zone solution portion of the complete solution of the
problem from equations (12.14) and (12.15), with cjo =0 and Djo =0, in

conjunction with the boundary condition (13.3) which now reduces to the form

‘0,m = =+ - 93)F” (0 (14. 10)
B P = 203 il q
or, equivalently, to

a . = l 2 i l w )
ijc D, +L1kaasmuk11 = Zd(n 3)Fi°(0) (14.11)

in the interval -1 <7 < 1. The orthonormality properties of the functions ',t:v.j and

1 sinl, 7 then give

?- /Il rl 2 1 : 20 _u
?’ Dka 2 G , Ajcja = (0) -1(17 -g)ﬁjd‘n = 3—>‘jFi°(0) (14.12)
; and therewith,
3 . -t/
2 -2
= —-a X J "
f b * 3 (Z | (e )Fio(o) . (14.13)

A consideration of (14.5) now gives that ga vanishes throughout, just as

g and g , for the case Q(0) =0. For the case V(0) = 0 the function F, , with
el io

: eo
E F;O(O) =land F,_(0) =0, gives the relation I-""' (0) = 2m°.
Having determined 8oy it becomes possible to evaluate the distribution of
stress in the shell, in accordance with equations (11.1) to (11. 3), with these
3

equations reducing, for the present problem to the form

p Esp2 % R _EBo
ox e l-Us[g +o-0] » T - 1-[/9

[g ;+...] (14. 4) |
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with a corresponding expression for ce. We see once again that the '"elementary"

interior contribution in L (as well as in 09) dominates the supplementary edge

zone contribution. At the same time the edge zone contribution is of the same order

of magnitude as the interior contribution insofar as the transverse shearing stress

T is concerned. We note, in particular, the possibility of writing, on the basis

(14.14) and (14.10), as expression for the edge shear distribution for the case V(0) =C

o
T, = T@% %—[(1 - n’) -(% - nz)] (14. 15)

with the second term inside the braces representing the edge zone effect, which
has the expected property of making no contribution to the shear stress resultant

Q.
A CASE OF NON-UNIFORM EDGE ROTATION

We now consider, as an example for which the results of the standard
two-dimensional shell theory are complemented in an essential way by three-
dimensional considerations, the case for which the axial edge displacement is

prescribed in the form

n

o k - a)? ~
u = -Bo[(r -a) +3 ‘r—c,—aL} ,u -Bo[l + k%] (15.1)

and therewith, in accordance with (6.16) and (6. 15),

> 1 _1+kn?

We can now, as before, determine the first term of the interior solution
contribution, with the help of the edge conditions

PO =1, F. 0 =0 "0r F,_
10

” or F[(0) =0 (15.3)

which follow from (9.2a) and (9.7a), depending on whether V(0) =0 or Q(0) =0

is prescribed, and we note that this determination does incorporate information

on the nature of the shape functions in (15.1), by way of the defining relation (15.2)

for B.

Introduction of Vs from equation (12.12) into the relation
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R 33
1 +k/5

2_¢ BN
a’g! (0) = k

which follows from (13.1) in conjunction with (15.2) now gives

T
ol ¥ T+w/5 H (15.5)

T

T T TR

T

Having 8o’ and 8o’ and recalling that 8, = 0 for all cases, we now have

as expressions for stresses, upto and including terms of relative order p2

$.. -E8_ .
el 05 ) s T @ L. » (15.6)

EB
Vo ® 1 -v2°eo

x 1 -V

1
as well as ce = ch + EBDZFio where, notably, all components of stress
are, within the narrow edge zone, of a higher order of magnitude than the

expected stresses associated with the interior solution contributions 8in and Fi.o'

We omit listing explicit formulas for stresses, and instead consider
equations (10.1) to (10.3) for V, Mx and Q, where we note that evaluation of the
1

contributions of relative order QE and P involves the relations

_ _4ak/3 1 ¥ . k/3
Faoll = “7 wib 5 JoFeode . 1+k/527 . (15.7)

Upon evaluation of (10. 1) to (10.3), we now obtain in generalization of

equations (14.6) to (14.9)

1
vy _ 8 ol
7@ m|''m 5s 1+1</5Z>«3

B 33( 40k/3 _1_) v

‘ms[zoc 1+ 7057 e +4]+...} (15. 8)
R g Lo f3E (| aok/3 sna) o w], (15.9)
Ee* ~ Im’ia m?[20G\" " 1 +k/5 x; B T St

when Q(0) =0, and
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M _(0) - .21__
- s E), IR B e~ 9 [9E - EE (5.10)
Ec? ‘m='/a m V3G 1 + k/5 xJ " m? zoc+4 ¥

§ ]
2 :
Q§02=_ﬁgl+o/E 3 _
Ec 2 a Gl+k/5 X

m
5k/3 :
'é[gg( 1+k/52)j) 2] } (15.11

when V(0) = 0.

In order to evaluate (15.8) to (15.11), we note that with the successive
roots Xj ~4.49, 7.72, 10,90, 14.07, 17.22, 20.37, 23.52, 26.67, 29.81,
32.99, (j + 3)7,... of equation (12, 10) the two sums of negative powers of Xj

come out to be

A%~ 0,015 ) At =~ 0.0029 . 15.12
¥ 2 s 12

Insofar as the interpretation Jf 2quations (15.8) to (15.11) is concerned, it

should be noted that the leading terms on the right may be considered as equivalent

to the consequences of ordinary thin shell theory, in conjunction with the solution

of the problem of how to introduce an appropriate representation of the displace-

ment condition (15.1) into this theory. Additionally, we find that while the effect

of transverse shear deformability and of cross-sectional width changes comes
out, as expected, to be of relative order 0, the effect of n”-term in u 2 comes
. l ’

out to be of order 0%, with the numerically largest values of these correction

terms resulting upon letting k tend to infinity, with a finite limiting value of Sok.

To obtain an impression of the numerical consequences of replacing a
linear distribution u = uo(r - a)/c by a pure cubic distribution u = uo(r - a)¥/c?
we set in equations (15.8) to (15.11) k == and B = -Sok/S = 3u°/5c. Therewith,

and with equations (15. 12) there follows

1
Yo o £ ﬁ_li,_o_ -
- ~ s=41+40,3= /2% 20G(1+o z)+ (15.13)
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T ———

M_(0)
i x B /E P |3E v
4 EG | m® a{l ; m’*[zoc(l i 4]} (15,14
when Q(0) =0, and
M_(0) 1
x 2k P2 [E e f[9E v (15.15)
EG  mila {1 0 DTN m’(zoc +4)} |
1
Q( 2= pl JE _ o |3E v (15.16) |
9 . 5 a{1+o.3m.3c-m,[5G(1+o.025)+2]}

when V(0) =0.
i
As might be expected, the shape correction terms with p? come out to be

numerically quite significant for moderately thin shells, say for 0 = 0.1. Addi-
tionally, due to the change from a linear to a cubic edge displacement distribution

a significant modification of the terms with 0 is seen to occur in some of the above

expressions.
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